Machine Learning and SHAP-Based Analysis of Deforestation and Forest Degradation Dynamics Along the Iraq–Turkey Border
Abstract
This study explores the spatiotemporal patterns and drivers of deforestation and forest degradation along the politically sensitive Iraq–Turkey border within the Duhok Governorate between 2015 and 2024. Utilizing paired remote sensing (RS) and high-end machine learning (ML) methods, forest dynamics were simulated from Sentinel-2 imagery, climate datasets, and topographic variables. Seven ML models were evaluated, and XGBoost consistently outperformed the others, yielding predictive accuracies (R2) of 0.903 (2015), 0.910 (2019), and 0.950 (2024), and a low RMSE (≤0.035). Model interpretability was further improved through the application of SHapley Additive exPlanations (SHAP) to estimate variable contributions and a Generalized Additive Model (GAM) to elucidate complex nonlinear interactions. The results showed distinct temporal shifts; climatic factors (rainfall and temperature) primarily influenced vegetation cover in 2015, whereas anthropogenic drivers such as forest fires (NBR), road construction (RI), and soil exposure (BSI) intensified by 2024, accounting for up to 12% of the observed forest loss. Forest canopy cover decreased significantly, from approximately 630 km2 in 2015 to 577 km2 in 2024, mainly due to illegal deforestation, road network expansion, and conflict-induced fires. This study highlights the effectiveness of an ML-driven RS analysis for geoinformation needs in geopolitically complex and data-scarce regions. These findings underscore the urgent need for robust, evidence-based conservation policies and demonstrate the utility of interpretable ML techniques for forest management policy optimization, providing a reproducible methodological blueprint for future ecological assessment.
Author
Yaseen T. Mustafa
DOI
https://doi.org/10.3390/earth6020049
Publisher
ISSN
2673-4834
Publish Date: